4.7 Article

Comparative study on the thermal-hydraulic performance of tubes enhanced with three different types of teardrop protrusions

Journal

APPLIED THERMAL ENGINEERING
Volume 236, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2023.121682

Keywords

Simulation; Heat Transfer; Pressure Drop; Thermal-hydraulic performance; Teardrop protrusions; Dimples

Ask authors/readers for more resources

This paper investigates the effects of changing the tail curves of teardrop protrusions on thermal-hydraulic performance. The results show that using a curved tail enhances the performance compared to a straight tail, and tear-circle protrusions with circular tail curves outperform other protrusion shapes.
An attractive approach for improving heat transfer in tubes is creating protrusions on the inner surface of tubes. Protrusions can have various shapes. One of the attractive shapes in the literature is a teardrop. For a teardrop protrusion, different teardrop tails have been used in the literature, but no study has considered the effects of the type of these tails on the thermal-hydraulic performance of these protrusions. In this paper, three types of teardrop protrusions were defined to numerically study the effects of changing the tail curves of a teardrop protrusion on thermal-hydraulic performance. One of these teardrop protrusions with an elliptic tail is novel and not similar to any teardrop protrusion reported in the literature. The heat transfer performance of these teardrop protrusions is compared with each other and with ellipsoidal protrusions in a Reynolds number (Re) range of 10,000 to 40,000. The realisable k-epsilon model and the periodic boundary conditions were adopted for the numerical model. Six different tube configurations with different protrusion pitches were considered for each protrusion shape. The results showed that using a curved tail for teardrop protrusions results in better performance than a straight tail, which was the most used shape in the literature. Tear-circle protrusions with circular tail curves were superior to all protrusion shapes (other teardrop and ellipsoidal protrusions) considered in this study at the entire Re range. A tube enhanced with tear-circle protrusions with the optimum pitch improved thermal--hydraulic performance by up to 54% compared to a smooth tube.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available