4.5 Article

Structural insights in the permeation mechanism of an activated GIRK2 channel

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
Volume 1866, Issue 1, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.bbamem.2023.184231

Keywords

GIRK; Permeation mechanism; QM/MM

Ask authors/readers for more resources

G protein-gated inwardly rectifying potassium (GIRK) channels play a significant role in regulating cell excitability. This study investigated the ion permeation mechanism in GIRK2 mutants using molecular dynamic simulations and QM/MM methods. The results revealed the importance of a multi-ion distribution for ion conduction.
G protein-gated inwardly rectifying potassium (GIRK) channels play a significant role in physiopathology by the regulation of cell excitability. This regulation depends on the K+ ion conduction induced by structural constrictions: the selectivity filters (SFs), helix bundle crossings (HBCs), and G-loop gates. To explore why no permeation occurred when the constrictions were kept in the open state, a 4-K+-related occupancy mechanism was proposed. Unfortunately, this hypothesis was neither assessed, nor was the energetic characteristics presented. To identify the permeation mechanism on an atomic level, all-atom molecular dynamic (MD) simulations and a coupled quantum mechanics and molecular mechanics (QM/MM) method were used for the GIRK2 mutant R201A. It was found that the R201A had a moderate conductive capability in the presence of PIP2. Furthermore, the 4-K+ group of ions was found to dominate the conduction through the activated HBC gate. This shielding-like mechanism was assessed by the potential energy barrier along the conduction pathway. Mutation studies did further support the assumption that E152 was responsible for the mechanism. Moreover, E152 was most probably facilitating the inflow of ions from the SF to the cavity. On the contrary, N184 had no remarkable effect on this mechanism, except for the conduction efficiency. These findings highlighted the necessity of a multi-ion distribution for the conduction to take place, and indicated that the K+ migration was not only determined by the channel conductive state in the GIRK channel. The here presented multi-ion permeation mechanism may help to provide an effective way to regulate the channelopathies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available