4.5 Article

The effect of trans-resveratrol on the physicochemical properties of lipid membranes with different cholesterol content

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
Volume 1866, Issue 1, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.bbamem.2023.184212

Keywords

Lipid monolayers; Liposomes; Resveratrol; Model membranes

Ask authors/readers for more resources

Resveratrol, a popular phytoalexin found in grapes and red wine, has beneficial effects on the cardiovascular system, exhibits antiviral, antibacterial, and antifungal properties, and may have therapeutic effects against cancer. This study investigates the interaction of resveratrol with model cell membranes, demonstrating changes in their physicochemical parameters and highlighting the role of cholesterol content in resveratrol incorporation. The findings suggest that the molecular mechanism of action of resveratrol may involve interactions with lipid rafts.
Resveratrol is one of the most popular phytoalexins, which naturally occurs in grapes and red wine. This compound not only has beneficial effects on the human body, especially on the cardiovascular system, but also has antiviral, antibacterial and antifungal properties. In addition, resveratrol may have therapeutic effects against various types of cancer. The mechanism of action of resveratrol is not fully understood, but it is suspected that one of the most important steps is its interaction with the cell membrane and changing its molecular organization. Therefore, in the present study, we investigated the effects of resveratrol at different concentrations (0-75 mu M) on model membranes composed of POPC, SM and cholesterol, in systems with different cholesterol contents and a constant POPC/SM molar ratio (1:1). Our tests included systems containing 5, 15 and 33.3 mol% cholesterol. Tests were carried out for monolayers using the Langmuir monolayer technique supported by Brewster angle microscopy and penetration experiments. Bilayer (liposome) experiments included calcein release, steady-state DPH fluorescence anisotropy and partition coefficients. The results showed that resveratrol interacts with model cell membranes (lipid monolayers and lipid bilayers), and its incorporation into membranes is accompanied by changes in their physicochemical parameters, such as lipid packing, fluidity and permeability. Furthermore, we showed that the cholesterol content of the membrane significantly affects the degree of incorporation of resveratrol into the model membrane, which may indicate that the molecular mechanism of action of this compound is closely related to its interactions with lipid rafts, domains responsible for regulating various cellular functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available