4.8 Review

Engineered nanomaterials for carbon capture and bioenergy production in microbial electrochemical technologies: A review

Journal

BIORESOURCE TECHNOLOGY
Volume 389, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2023.129809

Keywords

Carbon capture; Engineered nanomaterials; Microbial electrochemical technologies; Microbial electrosynthesis; Photosynthetic microbial fuel cells

Ask authors/readers for more resources

The mounting threat of global warming is undeniable, and current carbon capture and storage technologies face challenges. The use of engineered nanomaterials in microbial electrochemical technologies has gained momentum as a promising solution, enhancing carbon capture efficiency while enabling bioenergy production and wastewater treatment.
The mounting threat of global warming, fuelled by industrialization and anthropogenic activities, is undeniable. In 2017, atmospheric carbon dioxide (CO2), the primary greenhouse gas, exceeded 410 ppm for the first time. Shockingly, on April 28, 2023, this figure surged even higher, reaching an alarming 425 ppm. Even though extensive research has been conducted on developing efficient carbon capture and storage technologies, most suffer from high costs, short lifespans, and significant environmental impacts. Recently, the use of engineered nanomaterials (ENM), particularly in microbial electrochemical technologies (METs), has gained momentum owing to their appropriate physicochemical properties and catalytic activity. By implementing ENM, the MET variants like microbial electrosynthesis (MES) and photosynthetic microbial fuel cells (pMFC) can enhance carbon capture efficiency with simultaneous bioenergy production and wastewater treatment. This review provides an overview of ENMs' role in carbon capture within MES and pMFC, highlighting advancements and charting future research directions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available