4.8 Article

Maximizing Electrostatic Polarity of Non-Sacrificial Electrolyte Additives Enables Stable Zinc-Metal Anodes for Aqueous Batteries

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 62, Issue 40, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202307880

Keywords

Electrostatic Polarity; Non-Sacrificial Additives; Zinc-Ion Batteries; Zn Anode

Ask authors/readers for more resources

This study reveals the critical role of saccharide additives in regulating reversible zinc plating/stripping chemistry. By continuously modulating the solvation structure of zinc ions and forming a molecular adsorption layer, saccharide additives enable uniform zinc deposition and improve cycling stability and lifespan.
Although additives are widely used in aqueous electrolytes to inhibit the formation of dendrites and hydrogen evolution reactions on Zn anodes, there is a lack of rational design principles and systematic mechanistic studies on how to select a suitable additive to regulate reversible Zn plating/stripping chemistry. Here, using saccharides as the representatives, we reveal that the electrostatic polarity of non-sacrificial additives is a critical descriptor for their ability to stabilize Zn anodes. Non-sacrificial additives are found to continuously modulate the solvation structure of Zn ions and form a molecular adsorption layer (MAL) for uniform Zn deposition, avoiding the thick solid electrolyte interphase layer due to the decomposition of sacrificial additives. A high electrostatic polarity renders sucrose the best hydrated Zn2+ desolvation ability and facilitates the MAL formation, resulting in the best cycling stability with a long-term reversible plating/stripping cycle life of thousands of hours. This study provides theoretical guidance for the screening of optimal additives for high-performance ZIBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available