4.6 Article

AQAFI: a bioanalytical method for automated KPIs quantification of fluorescent images of human leukocytes and micro-nano particles

Journal

ANALYST
Volume -, Issue -, Pages -

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3an01166f

Keywords

-

Ask authors/readers for more resources

This study presents a novel method for automated quality assessment of fluorescent images captured using smartphone fluorescence microscopes. The method utilizes feature extraction methods to identify and measure multiple features of interest in leukocyte and micro-nanoparticle images. The results show that the method is able to accurately assess the quality of fluorescent images and is highly correlated with manual calculations.
Micro-nanoparticle and leukocyte imaging find significant applications in the areas of infectious disease diagnostics, cellular therapeutics, and biomanufacturing. Portable fluorescence microscopes have been developed for these measurements, however, quantitative assessment of the quality of images (micro-nanoparticles, and leukocytes) captured using these devices remains a challenge. Here, we present a novel method for automated quality assessment of fluorescent images (AQAFI) captured using smartphone fluorescence microscopes (SFM). AQAFI utilizes novel feature extraction methods to identify and measure multiple features of interest in leukocyte and micro-nanoparticle images. For validation of AQAFI, fluorescent particles of different diameters (8.3, 2, 1, 0.8 mu m) were imaged using custom-designed SFM at a range of excitation voltages (3.8-4.5 V). Particle intensity, particle vicinity intensity, and image background noise were chosen as analytical parameters of interest and measured by the AQAFI algorithm. A control method was developed by manual calculation of these parameters using ImageJ which was subsequently used to validate the performance of the AQAFI method. For micro-nanoparticle images, correlation coefficients with R-2 > 0.95 were obtained for each parameter of interest while comparing AQAFI vs. control (ImageJ). Subsequently, key performance indicators (KPIs) i.e., signal difference to noise ratio (SDNR) and contrast to noise ratio (CNR) were defined and calculated for these micro-nano particle images using both AQAFI and control methods. Finally, we tested the performance of the AQAFI method on the fluorescent images of human peripheral blood leukocytes captured using our custom SFM. Correlation coefficients of R-2 = 0.99 were obtained for each parameter of interest (leukocyte intensity, vicinity intensity, background noise) calculated using AQAFI and control (ImageJ). A high correlation was also found between the CNR and SDNR values calculated using both methods. The developed AQAFI method thus presents an automated and precise way to quantify and assess the quality of fluorescent images (micro-nano particles and leukocytes) captured using portable SFMs. Similarly, this study finds broader applicability and can also be employed with benchtop microscopes for the quantitative assessment of their imaging performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available