4.7 Article

OsTHA8 encodes a pentatricopeptide repeat protein required for RNA editing and splicing during rice chloroplast development

Journal

CROP JOURNAL
Volume 11, Issue 5, Pages 1353-1367

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.cj.2023.04.009

Keywords

Oryza sativa L.; Chloroplast biogenesis; Pentatricopeptide repeat protein; RNA editing; RNA splicing

Ask authors/readers for more resources

In this study, the role of the OsTHA8 gene in chloroplast development in rice was investigated. OsTHA8 was found to be crucial for RNA editing and chloroplast biogenesis, shedding light on the regulatory mechanisms of chloroplast development.
In higher plants, the chloroplast is the most important organelle for photosynthesis and for numerous essential metabolic processes in the cell. Although many genes involved in chloroplast development have been identified, the mechanisms underlying such development are not fully understood. In this study, a rice (Oryza sativa) mutant exhibiting pale green color and seedling lethality was isolated from a mutant library. The mutated gene was identified as an ortholog of THA8 (thylakoid assembly 8) in Arabidopsis and maize. This gene is designated as OsTHA8 hereafter. OsTHA8 showed a typical pentatricopeptide repeat (PPR) characteristic of only four PPR motifs. Inactivation of OsTHA8 led to a deficiency in chloroplast development in the rice seedling stage. OsTHA8 was expressed mainly in young leaves and leaf sheaths. The OsTHA8 protein was localized to the chloroplast. Loss of function of OsTHA8 weakened the editing efficiency of ndhB-611/737 and rps8-182 transcripts under normal conditions. Y2H and BiFC indicated that OsTHA8 facilitates RNA editing by forming an editosome with multiple organellar RNA editing factor (OsMORF8) and thioredoxin z (OsTRXz), which function in RNA editing in rice chloroplasts. Defective OsTHA8 impaired chloroplast ribosome assembly and resulted in reduced expression of PEP-dependent genes and photosynthesis-related genes. Abnormal splicing of the chloroplast gene ycf3 was detected in ostha8. These findings reveal a synergistic regulatory mechanism of chloroplast biogenesis mediated by RNA, broaden the function of the PPR family, and shed light on the RNA editing complex in rice.(c) 2023 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available