4.6 Article

Monolithically and Vertically Integrated LED-on-FET Device Based on a Novel GaN Epitaxial Structure

Journal

IEEE TRANSACTIONS ON ELECTRON DEVICES
Volume -, Issue -, Pages -

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TED.2023.3321705

Keywords

Field-effect transistor (FET); light-emitting diode (LED); monolithically and vertically integrated

Ask authors/readers for more resources

This article reports on the fabrication of monolithically and vertically integrated LED-on-FET devices on a new GaN epitaxial structure. The designed device structure and fabrication process are simple, and it shows high reliability and low interconnect resistance. The integrated LED efficiently emits specific wavelength light under voltage and gate voltage control.
Optoelectronic devices, such as light-emitting diodes (LEDs), based on GaN-based semiconductor compounds are widely used for their advantages of long life, high reliability, and low energy consumption. The persistent challenge is integrating LED with transistors to achieve smaller size, lighter weight, higher speed, and more reliable optoelectronic integrated circuits. Here, we report monolithically and vertically integrated LED-on-FET devices fabricated on a novel GaN epitaxial structure. The designed device structure and fabrication process are simple. It also eliminates the extra area occupied by the transistor, and the shared n-GaN layer between the LED and FET reduces interconnect resistance and improves reliability. The measured threshold voltage (V-Th) of the LED-on-FET device is extrapolated as 3.9 V at the voltage (V-DD) of 5 V, and V-Th decreases with the increase of V-DD . More importantly, the gate voltage (V-GS) shows good performance in modulated electroluminescence (EL) intensity and switching capability of the LED. The integrated LED efficiently emits light modulation with a wavelength of 440 nm at V-DD= 9 V and V-GS=4-9 V (step = 1 V), which are necessary for devices in applications, such as displays and smart lighting. This epitaxy structure and integration scheme is promising in achieving large-scale optoelectronic integrated circuits, such as the next-generation micro-LED and nano-LED with super compact integrated drivers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available