3.9 Article

Gastric carboxylesterases of the edible crab Cancer pagurus (Crustacea, Decapoda) can hydrolyze biodegradable plastics

Journal

EMERGING CONTAMINANTS
Volume 10, Issue 1, Pages -

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.emcon.2023.100275

Keywords

Biodegradable plastics; Microplastics; Crustaceans; Ingestion; Enzymes; Enzymatic degradation

Ask authors/readers for more resources

Biodegradable plastics can be hydrolyzed by enzymes in the digestive tract of marine organisms, such as the edible crab C. pagurus, indicating the potential for widespread degradation of these materials in marine environments.
A promising strategy to counteract the progressing plastic pollution of the environment can involve the replacement of persistent plastics with biodegradable materials. Biodegradable polymers are enzymatically degradable by various hydrolytic enzymes. However, these materials can reach the environment in the same way as conventional plastics. Therefore, they are accessible to terrestrial, freshwater, and marine biota. Once ingested by marine organisms, highly active enzymes in their digestive tracts may break down biodegradable compounds. We incubated microparticles of five different biodegradable plastics, based on polylactictic acid (PLA), polybutylene succinate (PBS), polybutylene adipate terephthalate (PBAT) and polyhydroxybutyrate-co-valerate (PHBV), in-vitro with the gastric fluid of the edible crab Cancer pagurus and evaluated the hydrolysis rates by pH Stat titration. A plastic blend of PLA with PBAT showed the highest hydrolysis rate. The enzymes in the gastric fluid of crabs were separated by anion exchange chromatography. Fractions with carboxylesterase activity were identified using fluorescent methylumbelliferyl (MUF)-derivatives. Pooled fractions with high carboxylesterase activity also hydrolyzed a PLA/PBAT plastic blend. Carboxylesterases showed molecular masses of 40-45 kDa as determined by native gel electrophoresis (SDS-PAGE). Our study demonstrated that digestive carboxylesterases in the gastric fluid of C. pagurus exhibit a high potential for hydrolyzing certain biodegradable plastics. Since esterases are common in the digestive tract of organisms, it seems likely that other invertebrates possess the ability to hydrolyze biodegradable plastics. (c) 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available