4.6 Article

Role of advanced glycation endproducts in bone fragility in type 1 diabetes

Journal

BONE
Volume 178, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2023.116928

Keywords

Advanced glycation endproducts; Type 1 diabetes; Fracture; Bone mineral density; Bone turnover; Bone microarchitecture

Ask authors/readers for more resources

The increased risk of fractures observed in adults with type 1 diabetes (T1D) cannot be solely explained by modest decreases in areal bone mineral density (BMD). Accumulation of advanced glycation endproducts (AGEs) in bone has been suggested as a possible cause for the increased bone fragility in diabetes. Although the evidence linking AGEs and fractures in individuals with T1D is limited, recent data show that AGEs, as measured by skin intrinsic fluorescence, are a risk factor for lower BMD in T1D. Further research is needed to determine if there is a causal relationship between fractures and AGEs in T1D. If confirmed, this could lead to interventions that can reduce AGE accumulation and ultimately reduce fractures in T1D patients.
The excess fracture risk observed in adults with type 1 diabetes (T1D) is inexplicable in the presence of only modest reductions in areal bone mineral density (BMD). Accumulation of advanced glycation endproducts (AGEs) in bone has been invoked as one explanation for the increased bone fragility in diabetes. The evidence linking AGEs and fractures in individuals with T1D is sparse, although the association has been observed in individuals with type 2 diabetes. Recent data show that in T1D, AGEs as measured by skin intrinsic fluorescence, are a risk factor for lower BMD. Further research in T1D is needed to ascertain whether there is a causal relationship between fractures and AGEs. If confirmed, this would pave the way for finding interventions that can slow AGE accumulation and thus reduce fractures in T1D.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available