4.6 Article

Electroosmotic flow of a power-law fluid through an asymmetrical slit microchannel with gradually varying wall shape and wall potential

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfa.2015.02.039

Keywords

Electroosmotic flow; Power-law fluid; Lubrication approximation

Funding

  1. Hong Kong Special Administrative Region, China [HKU 715510E]
  2. University of Hong Kong [201309176109]

Ask authors/readers for more resources

This study aims to investigate electroosmotic flow of a power-law fluid through a slit channel with walls asymmetrically patterned with periodic variations in shape and zeta potential. On taking into account the near-wall depletion layer, the present problem is simplified on the basis of the lubrication approximation, and through the use of the Helmholtz-Smoluchowski slip boundary condition. Nonlinear equations are to be solved for two unknown functions of axial dependence, one being the induced pressure gradient, and another being an undetermined stress component. An efficient numerical scheme is devised in this work to solve the nonlinear problem. Results are generated to check whether the principle of linear superposition of forces, for electrokinetic flow of a non-Newtonian fluid in the presence of a Newtonian depletion layer, is still applicable to flow in an asymmetric channel. It is also found that phase shifts between the geometrical and electric potential patterns on the two walls may lead to qualitatively disparate effects, depending on the power-law behavior index of the fluid and the applied pressure gradient. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available