4.8 Article

Amino-Functionalized Cu for Efficient Electrochemical Reduction of CO to Acetate

Journal

ACS CATALYSIS
Volume 13, Issue 6, Pages 3532-3540

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.2c05140

Keywords

amino-functionalized Cu; CO electroreduction; acetate; intermediates

Ask authors/readers for more resources

Electrosynthesis of valuable chemicals from CO2 or CO offers a promising approach to store renewable electricity and reduce carbon emission. In this study, amino functionalized Cu surface (Cu@NH2) derived from in situ electroreduction of copper ammonia chloride complexes exhibits significant catalytic performance for CO reduction to acetate. The amino groups on the Cu surface play a crucial role in maintaining the low valence state of Cu and stabilizing the oxygen-containing intermediates, thus promoting the coupling reaction between *CO and *CHO to form acetate.
Electrosynthesis of valuable chemicals from carbon dioxide (CO2) or carbon monoxide (CO) offers a promising strategy for the storage of renewable electricity and at the same time reduces carbon emission. However, the catalyst's activity and selectivity need significant improvements, and the exact mechanism of the reaction is still elusive. Herein, we report selective electrochemical reduction of CO to acetate on an amino functionalized Cu surface (Cu@NH2) derived from in situ electroreduction of copper ammonia chloride complexes. At a potential of -0.75 V versus the reversible hydrogen electrode (RHE), the Cu@NH2 exhibits significant catalytic performance of CO electroreduction with a CO-to-acetate Faradaic efficiency (FE) of 51.5% and an acetate partial current density of around 150 mA cm-2. Based on a combination of in situ spectroscopy studies and DFT calculations, it is found that the amino groups on the Cu surface are valuable for maintaining the low valence state of Cu, and the H delta+ in the amino groups can stabilize the oxygen-containing intermediates through hydrogen bonding, which effectively increases the coverage of *CHO on the catalyst's surface, thereby facilitating the *CO-*CHO coupling to acetate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available