4.7 Review

Identifying cancer driver genes in individual tumours

Journal

COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL
Volume 21, Issue -, Pages 5028-5038

Publisher

ELSEVIER
DOI: 10.1016/j.csbj.2023.10.019

Keywords

Cancer; Driver gene; Gene interaction network; Machine learning; Precision medicine

Ask authors/readers for more resources

Cancer, a heterogeneous disease with a strong genetic component, can benefit from precision medicine approaches to identify molecular drivers. Single-tumour methods based on gene interaction networks have limitations and require further research for evaluation.
Cancer is a heterogeneous disease with a strong genetic component making it suitable for precision medicine approaches aimed at identifying the underlying molecular drivers within a tumour. Large scale population-level cancer sequencing consortia have identified many actionable mutations common across both cancer types and sub-types, resulting in an increasing number of successful precision medicine programs. Nonetheless, such approaches fail to consider the effects of mutations unique to an individual patient and may miss rare driver mutations, necessitating personalised approaches to driver-gene prioritisation. One approach is to quantify the functional importance of individual mutations in a single tumour based on how they affect the expression of genes in a gene interaction network (GIN). These GIN-based approaches can be broadly divided into those that utilise an existing reference GIN and those that construct de novo patient-specific GINs. These single-tumour approaches have several limitations that likely influence their results, such as use of reference cohort data, network choice, and approaches to mathematical approximation, and more research is required to evaluate the in vitro and in vivo applicability of their predictions. This review examines the current state of the art methods that identify driver genes in single tumours with a focus on GIN-based driver prioritisation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available