4.7 Article

Water diffusion mechanisms in bitumen studied through molecular dynamics simulations

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 409, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2023.133828

Keywords

Bitumen; Water diffusion; Water cluster; Molecular dynamics; Phase separation; Hydrogen bonding

Ask authors/readers for more resources

This study investigates the water transport in bitumen and the clustering behavior of water molecules using molecular dynamics simulations. The results reveal that the water concentration in bitumen is low, and additional water molecules tend to form large clusters via hydrogen bonding, indicating micro-phase separation of water and bitumen. Hydrogen bonding and water clustering have a significant impact on the self-diffusion coefficient of water and the physical properties of bitumen.
Water transport is one of the major factors responsible for moisture damage in asphalt pavements. To study the thermodynamics and kinetics of water transport in bitumen and to uncover microscale mechanisms of moisture-induced damage, molecular dynamics simulations were performed for up to 600 ns for water-bitumen systems with realistic water contents that varied from 0 to 1.76 wt%. Hydrogen bonding interactions and clustering of water molecules at various combinations of temperature and water content were investigated, and their effects on the self-diffusion coefficient of water and bitumen properties are computed and discussed. It is shown that the saturated water concentration in bitumen is small, especially at low temperatures, and additional water molecules tend to form large water clusters via hydrogen bonding, indicating micro-phase separation of the water and bitumen phases inside the simulation box. Hydrogen bonding and water clustering play a crucial role on the magnitude of the self-diffusion coefficient of water. Physical properties of bitumen that include viscosity and cohesive energy are affected by water. The presence of large water clusters is indicative of how degradation in cohesion is observed on the microscale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available