4.3 Article

Kalkitoxin attenuates calcification of vascular smooth muscle cells via RUNX-2 signaling pathways

Journal

JOURNAL OF VETERINARY SCIENCE
Volume 24, Issue 5, Pages -

Publisher

KOREAN SOC VETERINARY SCIENCE
DOI: 10.4142/jvs.23148

Keywords

Kalkitoxin; RUNX-2; BMP-2; vascular calcification; vascular smooth muscle cell

Ask authors/readers for more resources

The study found that Kalkitoxin (KT) can inhibit calcification in vascular smooth muscle cells, reducing vascular calcification. This finding provides a basis for the development of new therapies for vascular calcification and arteriosclerosis.
Background: Kalkitoxin (KT) is an active lipopeptide isolated from the cyanobacterium Lyngbya majuscula found in the bed of the coral reef. Although KT suppresses cell division and inflammation, KT's mechanism of action in vascular smooth muscle cells (VSMCs) is unidentified. Therefore, our main aim was to investigate the impact of KT on vascular calcification for the treatment of cardiovascular disease. Objectives: Using diverse calcification media, we studied the effect of KT on VSMC calcification and the underlying mechanism of this effect. Methods: VSMC was isolated from the 6 weeks ICR mice. Then VSMCs were treated with different concentrations of KT to check the cell viability. Alizarin red and von Kossa staining were carried out to examine the calcium deposition on VSMC. Thoracic aorta of 6 weeks mice were taken and treated with different concentrations of KT, and H and E staining was performed. Real-time polymerase chain reaction and western blot were performed to examine KT's effect on VSMC mineralization. Calcium deposition on VSMC was examined with a calcium deposition quantification kit. Results: Calcium deposition, Alizarin red, and von Kossa staining revealed that KT reduced inorganic phosphate-induced calcification phenotypes. KT also reduced Ca++-induced calcification by inhibiting genes that regulate osteoblast differentiation, such as runt-related transcription factor 2 (RUNX-2), SMAD family member 4, osterix, collagen 1 alpha, and osteopontin. Also, KT repressed Ca2+-induced bone morphogenetic protein 2, RUNX-2, collagen 1 alpha, osteoprotegerin, and smooth muscle actin protein expression. Likewise, Alizarin red and von Kossa staining showed that KT markedly decreased the calcification of ex vivo ring formation in the mouse thoracic aorta. Conclusions: This experiment demonstrated that KT decreases vascular calcification and may be developed as a new therapeutic treatment for vascular calcification and arteriosclerosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available