4.6 Article

Superposition principle and nonlinear response in spin glasses

Journal

PHYSICAL REVIEW B
Volume 107, Issue 21, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.107.214436

Keywords

-

Ask authors/readers for more resources

This paper investigates the microscopic origin of nonlinear dynamics in spin glasses by examining the time development of the spin-glass correlation length. The authors find a violation of the extended principle of superposition and observe differences in the correlation lengths between zero-field-cooled and thermoremanent magnetization as the magnetic field increases.
The extended principle of superposition has been a touchstone of spin-glass dynamics for almost 30 years. The Uppsala group has demonstrated its validity for the metallic spin glass, CuMn, for magnetic fields H up to 10 Oe at the reduced temperature T-r = T/T-g = 0.95, where T-g is the spin-glass condensation temperature. For H > 10 Oe, they observe a departure from linear response which they ascribe to the development of nonlinear dynamics. The thrust of this paper is to develop a microscopic origin for this behavior by focusing on the time development of the spin-glass correlation length, xi (t, t(w); H). Here, t is the time after H changes, and t(w) is the time from the quench for T > T-g to the working temperature T until H changes. We connect the growth of xi (t, t(w); H) to the barrier heights Lambda(t(w)) that set the dynamics. The effect of H on the magnitude of Delta (t(w)) is responsible for affecting differently the two dynamical protocols associated with turning H off (TRM, or thermoremanent magnetization) or on (ZFC, or zero-field-cooled magnetization). This difference is a consequence of nonlinearity based on the effect of H on Delta (t(w)). Superposition is preserved if Delta(t(w)) is linear in the Hamming distance Hd (proportional to the difference between the self-overlap qEA and the overlap q[ Delta(t(w))]). However, superposition is violated if Delta(t(w)) increases faster than linear in Hd. We have previously shown, through experiment and simulation, that the barriers Delta (t(w)) do increase more rapidly than linearly with Hd through the observation that the growth of. (t, t(w); H) slows down as. (t, t(w); H) increases. In this paper, we display the difference between the zero-fieldcooled.ZFC(t, t(w); H) and the thermoremanent magnetization.TRM(t, t(w); H) correlation lengths as H increases, both experimentally and through numerical simulations, corresponding to the violation of the extended principle of superposition in line with the finding of the Uppsala Group.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available