4.7 Article

Mechanical performance of geopolymer concrete with micro silica fume and waste steel lathe scraps

Journal

CASE STUDIES IN CONSTRUCTION MATERIALS
Volume 19, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.cscm.2023.e02548

Keywords

Recycling; Geopolymer concrete; Lathe scraps; Micro silica; Setting time; Workability; Compressive strength; Flexural strength; Splitting tensile strength

Ask authors/readers for more resources

This study shows that combining 5% micro silica with 1% lathe scraps provides the highest strength in concrete. Adding 5% micro silica significantly improves compressive, flexural, and splitting tensile strengths, while higher additions of 10% and 20% decrease these strengths. Moreover, incorporating 1% lathe scraps leads to considerable increases in strength, but higher additions of 2% and 3% reduce the capacity.
Environmental studies for solutions are among the most important agendas of the scientific world. Most of the new studies are taking into account environmental effects. However, it is interesting for the scientific world to find solutions for accumulated environmental problems, to reduce harmful production, and to turn wastes that cause environmental pollution into useful products. In addition to incorporating fly ash, a recognized environmentally friendly and sustainable ma-terial, geopolymer concrete, utilizes micro silica fume (micro silica) as a binding agent. Furthermore, waste lathe scraps are introduced to enhance and safeguard the concrete's me-chanical properties. During the preparation phase, significant enhancements have been identified in the workability and setting time of concrete. A total of 16 test samples were prepared in this study. Micro silica of 0%, 5%, 10%, and 20%, and lathe scraps of 0%, 1%, 2%, and 3% were examined. Experimental findings revealed that incorporating 5% micro silica resulted in notable improvements in the compressive, flexural, and splitting tensile strengths, with the increases of 14.4%, 7.45%, and 6.18%, respectively. However, higher additions of 10% and 20% were found to decrease these strengths. In contrast, the inclusion of 1% lathe scraps led to considerable in-creases in the compressive, flexural, and splitting tensile strengths by 11.4%, 6.35%, and 8.23%, respectively. However, the addition of 2% and 3% lathe scraps resulted in the reduced capacity. The findings demonstrated that combining 5% micro silica with 1% lathe scraps provided the highest strength, with the improvements of 25.7%, 14.4%, and 12% in the compressive, flexural, and splitting tensile strengths, respectively. Considering the enhancements in the workability, setting time, and strengths observed in all the tests, the recommended optimal geopolymer mixture is 5% micro silica together with 1% lathe scraps.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available