4.7 Article

High-performance electro-responsive ionic soft actuators based on polypyrrole coated functional carboxylated bacterial cellulose nanofibers for bioinspired applications

Journal

SENSORS AND ACTUATORS A-PHYSICAL
Volume 363, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2023.114734

Keywords

Ionic actuator; Polymerization; Nanocomposites; Polypyrrole; Bioinspired applications

Ask authors/readers for more resources

This study reports a low voltage ionic soft actuator based on nanofibers, ionic liquid, and polypyrrole electrodes, which exhibits high actuation performance and long working durability. The actuator also demonstrates various bioinspired applications, showing great potential for wide-ranging applications.
Low voltage high-performance soft actuators have attracted great attention in flexible haptic displays, soft robots, biomedical devices, and braille displays. Herein, we report a low voltage ionic soft actuator based on carboxylated bacterial cellulose (CBC) nanofibers, ionic liquid (IL), and polypyrrole (PPy) electrodes. The highly conductive PPy nanoparticles were homogeneously coated on the CBC-IL membrane surfaces by using a chemical polymerization method, because the carboxylated groups on CBC could enhance the adsorption of PPy nano-particles. The proposed CBC-IL-PPy actuator displayed a peak-to-peak displacement of 11.66 mm and long working durability (97 % retention after 2 h) under a sinusoidal voltage of 2.0 V at 0.1 Hz, and wide actuation frequency. The enhanced actuation performances of the actuator were due to its increased specific capacitance, ionic conductivity, and ionic exchange capacity. Furthermore, the bioinspired applications of the actuators were successfully demonstrated such as soft robot touch finger, bionic active stent, grapple robot, and bionic wing. Thus, the proposed low voltage high-performance soft actuator will advance artificial muscles, soft robots, robotic interactions, biomedical active devices, and flexible haptic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available