4.7 Article

Human mesenchymal stem cells derived from adipose tissue showed a more robust effect than those from the umbilical cord in promoting corneal graft survival by suppressing lymphangiogenesis

Journal

STEM CELL RESEARCH & THERAPY
Volume 14, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s13287-023-03559-2

Keywords

Mesenchymal stem cells; Corneal transplantation; Allograft rejection; Lymphangiogenesis; Neovascularization

Ask authors/readers for more resources

This study compared the immunosuppressive capacity of mesenchymal stem cells (MSCs) from human adipose tissue (hAD-MSCs) and human umbilical cord (hUC-MSCs) and explored their effects on graft neovascularization and lymphangiogenesis in corneal transplantation models. The results showed that hAD-MSCs had stronger immunosuppressive effects in vitro, while hUC-MSCs exerted inhibitory effects through cell-cell contact-dependent mechanisms. Systemic administration of a lower dose of hAD-MSCs performed better in prolonging corneal allograft survival, while subconjunctival administration of MSCs was safer and further prolonged allograft survival. Both types of MSCs inhibited corneal neovascularization, but hAD-MSCs showed greater superiority in suppressing graft lymphangiogenesis.
BackgroundMesenchymal stem cells (MSCs) have shown promising potential in allograft survival. However, few reports have focused on comparing the immunosuppressive capacity of MSCs from different sources and administered via different routes in inhibiting transplant rejection. Moreover, virtually nothing is known about the role of MSCs in the regulation of graft neovascularization and lymphangiogenesis. In this study, we compared the efficacy of human adipose MSCs (hAD-MSCs) and human umbilical cord MSCs (hUC-MSCs) in vitro and in corneal transplantation models to explore the underlying molecular mechanisms and provide a powerful strategy for future clinical applications.MethodshAD-MSCs and hUC-MSCs were generated, and their self-renewal and multi-differentiation abilities were evaluated. The inhibitory effect of human MSCs (hMSCs) was examined by T-cell proliferation assays with or without transwell in vitro. Two MSCs from different sources were separately adoptively transferred in mice corneal transplantation (5 x 105 or 1 x 106/mouse) via topical subconjunctival or intravenous (IV) routes. Allograft survival was evaluated every other day, and angiogenesis and lymphomagenesis were quantitatively analyzed by immunofluorescence staining. The RNA expression profiles of hMSCs were revealed by RNA sequencing (RNA-seq) and verified by quantitative real-time PCR (qRT-PCR), western blotting or ELISA. The function of the differentially expressed gene FAS was verified by a T-cell apoptosis assay.ResultshAD-MSCs induced stronger immunosuppression in vitro than hUC-MSCs. The inhibitory effect of hUC-MSCs but not hAD-MSCs was mediated by cell-cell contact-dependent mechanisms. Systemic administration of a lower dose of hAD-MSCs showed better performance in prolonging corneal allograft survival than hUC-MSCs, while subconjunctival administration of hMSCs was safer and further prolonged corneal allograft survival. Both types of hMSCs could inhibit corneal neovascularization, while hAD-MSCs showed greater superiority in suppressing graft lymphangiogenesis. RNA-seq analysis and confirmation experiments revealed the superior performance of hAD-MSCs in allografts based on the lower expression of vascular endothelial growth factor C (VEGF-C) and higher expression of FAS.ConclusionsThe remarkable inhibitory effects on angiogenesis/lymphangiogenesis and immunological transplantation effects support the development of hAD-MSCs as a cell therapy against corneal transplant rejection. Topical administration of hMSCs was a safer and more effective route for application than systemic administration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available