4.6 Article

A Computational Chemistry Approach to the Molecular Design of SiO2 Nanoparticles Coated with Stearic Acid and Sodium Stearate in Ethanol Solvent.

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfa.2023.132527

Keywords

Adsorption; Molecular Interactions; MD Simulations; SiO2 NPs

Ask authors/readers for more resources

In this study, the adsorption process of different surfactants on SiO2 nanoparticles was investigated using experimental and molecular dynamics simulation methods. The results showed that SiO2 nanoparticles have a strong affinity for ethanol solvent. The presence of Na+ ions reduced the electrostatic repulsion and promoted the adsorption process. The findings from both experimental and simulation studies can be used to predict and design the hydrophobicity of coated nanoparticles.
Preparation of hydrophobic SiO2 nanoparticles (NPs) coated with different surfactants is important due to their potential application in different fields of chemistry. In this work, a combined experimental and Molecular Dynamics (MD) simulation approach, is advanced to characterize the adsorption process, in ethanol as a solvent, of stearic acid and sodium stearate on SiO2 spherical NPs with different ionization degrees (0%, 10%, and 23.3%). The main objective is to gain molecular insight into the factors involved in the preparation of hydrophobic coated NPs, which involves the intervention of ion-dipole, electrostatic, and hydrogen bond-type interactions depending on the surfactants and the nature SiO2 NPs. Our results demonstrate that the SiO2 NPs have a good affinity for ethanol solvent medium., as confirmed through the analysis of the Radial Distribution Functions (RDFs)), which indicates that hydrogen bonds are formed at a distance of similar to 0.192 nm between ethanol and SiO2 NPs. The presence of Na+ ions reduce the electrostatic repulsion between the -COO- and -SiO- groups in NPs with degrees of ionization of 10% and 23.3%, because it acts as a bridge and thus favors the adsorption between the silanol and carboxylic groups. The investigation of the Potentials of Mean Force (PMFs) suggests that the adsorption on these NPs, is a spontaneous process compared with the case with 0% ionization degree. The experimental coating of the NPs was studied using Atomic Force Microscopy (AFM), a technique that allows the indirect measure of the Work of Adhesion (W-adh), a key quantity to estimate the energy needed to separate the interfaces AFM tip-sample. The experimental values of W-adh for the pure SiO2 NPs and two modified SiO2 NPs correspond to 2.01 J/m(2), 1.72 J/m(2) and 1.43 J/m(2), respectively. The main conclusion is that the interaction energies between surfactants and SiO2 NPs, estimated from MD simulations, and the W-adh obtained from AFM measurements are correlated, in the sense that the reduction in the W-adh, in a solvent-free environment, corresponds to an increment of the interaction energy in the presence of the solvent. This reduction in W-adh is also associated with the fact that the nature of the coating of the SiO2 NPs surfaces increases the NPs hydrophobicity. Our analysis provides a path for the computational design and the prediction of hydrophobicity of coated NPs, which is the main focus of our work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available