4.6 Article

Tunable phonon-driven magnon-magnon entanglement at room temperature

Journal

NEW JOURNAL OF PHYSICS
Volume 25, Issue 11, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1367-2630/ad0b20

Keywords

magnon; phonon; steady-state; quantum entanglement; room temperature

Ask authors/readers for more resources

In this work, the existence of entangled steady-states in bipartite quantum magnonic systems at elevated temperatures is reported. The dissipative dynamics of two magnon modes in a bipartite antiferromagnet, coupled with a phonon mode and an external rotating magnetic field, are considered. The entanglement between the bipartite magnons is quantified using entanglement negativity, and its dependence on temperature and magnetic field is calculated. Evidence is provided that the coupling between the magnon and phonon modes is necessary for the entanglement, and it is shown that for specific phonon frequency and magnon-phonon coupling rate, there are always ranges of magnetic field amplitudes and frequencies where magnon-magnon entanglement persists at room temperature.
We report the existence of entangled steady-states in bipartite quantum magnonic systems at elevated temperatures. We consider dissipative dynamics of two magnon modes in a bipartite antiferromagnet, subjected to interaction with a phonon mode and an external rotating magnetic field. To quantify the bipartite magnon-magnon entanglement, we use entanglement negativity and compute its dependence on temperature and magnetic field. We provide evidence that the coupling between magnon and phonon modes is necessary for the entanglement, and that, for any given phonon frequency and magnon-phonon coupling rate, there are always ranges of the magnetic field amplitudes and frequencies for which magnon-magnon entanglement persists at room temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available