4.8 Article

A resistance-driven H2 gas sensor: high-entropy alloy nanoparticles decorated 2D MoS2

Journal

NANOSCALE
Volume 15, Issue 42, Pages 17097-17104

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3nr04810a

Keywords

-

Ask authors/readers for more resources

The demand for carbon-free energy sources has made the use of hydrogen (H2) gas increasingly important, but its explosive nature raises safety concerns. Researchers have developed a hydrogen gas detection sensor using high-entropy alloy nanoparticles, which shows high selectivity and sensitivity. By decorating the 2D MoS2 surface with these nanoparticles, the sensor can effectively adsorb and dissociate H2 gas, thereby improving its performance.
The need to use hydrogen (H2) gas has increasingly become important due to the growing demand for carbon-free energy sources. However, the explosive nature of H2 gas has raised significant safety concerns, driving the development of efficient and reliable detection. Although 2D materials have emerged as promising materials for hydrogen gas sensing applications due to their relatively high sensitivity, the incorporation of other nanomaterials into 2D materials can drastically improve both the selectivity and the sensitivity of sensors. In this work, high-entropy alloy nanoparticles using non-noble metals were used to develop a sensor for H2 gas detection. This chemical sensor was realized by decorating 2D MoS(2 )surfaces with multicomponent body-centered cubic (BCC) equiatomic Ti-Zr-V-Nb-Hf high-entropy alloy (HEA) nanoparticles. It was selective towards H-2, over NH3, H2S, CH4, and C4H10, demonstrating widespread applications of this sensor. To understand the mechanisms behind the abnormal selectivity and sensitivity, density functional theory (DFT) calculations were performed, showing that the HEA nanoparticles can act as a chemical hub for H2 adsorption and dissociation, ultimately improving the performance of 2D material-based gas sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available