4.7 Article

Anchoring Ultrasmall Pt Nanocrystals onto Carbon Nanohorn-Decorated 3D Graphene Networks to Boost Methanol Oxidation Reaction

Journal

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume 2023, Issue -, Pages -

Publisher

WILEY-HINDAWI
DOI: 10.1155/2023/7030594

Keywords

-

Ask authors/readers for more resources

In this study, a bottom-up strategy was successfully employed to anchor ultrasmall Pt nanocrystals onto carbon nanohorn-decorated three-dimensional graphene networks, resulting in Pt/CNH-G catalysts with exceptional performance. These catalysts demonstrated distinctive architectural advantages, including porous frameworks, large surface areas, highly dispersed Pt nanoparticles, and good electron conductivity. The optimized Pt/CNH-G catalyst exhibited outstanding methanol oxidation properties and long-term stability, surpassing conventional Pt catalysts supported by other carbon materials.
The successful commercialization of the direct methanol fuel cell (DMFC) is inseparable from the development of advanced Pt-based anode catalysts with high electrocatalytic activity and acceptable manufacturing cost. Here, we present a robust bottom-up strategy to anchor ultrasmall Pt nanocrystals with an average diameter of only 2.3 nm onto carbon nanohorn-decorated three-dimensional (3D) graphene networks (Pt/CNH-G) through a controllable self-assembly process. The as-derived 3D Pt/CNH-G catalysts manifest a series of distinctive architectural advantages, such as interconnected porous frameworks, large accessible surface areas, plentiful active cones, highly dispersed Pt nanoparticles, and good electron conductivity. Consequently, the optimized Pt/CNH-G catalyst is endowed with exceptional methanol oxidation properties with a large electrochemical active surface area of 128.6 m2 g-1, a high mass activity of 1626.0 mA mg-1, and excellent long-term stability, which are significantly superior to those of conventional Pt catalysts supported by carbon black, carbon nanotube, carbon nanohorn, and graphene matrices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available