4.8 Article

Nanostructure Tuning of Gold Nanoparticles Films via Click Sintering

Journal

SMALL
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202306167

Keywords

flexible substrate; gold nanoparticles; inkjet printing; nanoporous gold; nanostructures; sintering

Ask authors/readers for more resources

This study presents a new sintering method called click sintering, which uses a catalytic reaction to enhance and tune the nanostructuration of gold nanoparticle inks. This one-step approach allows for the creation of conductive and electroactive nanoporous thin films without the need for complex post-treatments. The properties of the film can be adjusted by controlling the reaction conditions. The click sintering strategy offers a rapid, easy, and inexpensive technique for fabricating functional nanostructures, with potential applications in flexible electronics, biosensing, energy, and catalysis.
Colloidal metal nanoparticles dispersions are commonly used to create functional printed electronic devices and they typically require time-, energy- and equipment-consuming post-treatments to improve their electrical and mechanical properties. Traditional methods, e.g. thermal, UV/IR, and microwave treatments, limit the substrate options and may require expensive equipment, not available in all the laboratories. Moreover, these processes also cause the collapse of the film (nano)pores and interstices, limiting or impeding its nanostructuration. Finding a simple approach to obtain complex nanostructured materials with minimal post-treatments remains a challenge. In this study, a new sintering method for gold nanoparticle inks that called as click sintering has been reported. The method uses a catalytic reaction to enhance and tune the nanostructuration of the film while sintering the metallic nanoparticles, without requiring any cumbersome post-treatment. This results in a conductive and electroactive nanoporous thin film, whose properties can be tuned by the conditions of the reaction, i.e., concentration of the reagent and time. Therefore, this study presents a novel and innovative one-step approach to simultaneously sinter gold nanoparticles films and create functional nanostructures, directly and easily, introducing a new concept of real-time treatment with possible applications in the fields of flexible electronics, biosensing, energy, and catalysis. This work proposes an innovative sintering strategy, click sintering, which uses a catalytic reaction to induce the coalescence of gold nanoparticles films, simultaneously creating a dense nanostructured material. This rapid, easy, and inexpensive procedure can be performed virtually in any laboratory and with possible integration into automatic deposition systems such as inkjet printers.image

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available