4.5 Article

Topographical modulation of macrophage phenotype by shrink-film multi-scale wrinkles

Journal

BIOMATERIALS SCIENCE
Volume 4, Issue 6, Pages 948-952

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6bm00224b

Keywords

-

Funding

  1. National Institutes of Health (NIH) National Institute of Dental and Craniofacial Research (NIDCR) Grant [DP2DE023319]
  2. California Institute of Regenerative Medicine (CIRM) Training Fellowship [TG2-01152]
  3. NIH New Innovator Grant [1DP2OD007283]

Ask authors/readers for more resources

The host immune response to foreign materials is a major hurdle for implanted medical devices. To control this response, modulation of macrophage behavior has emerged as a promising strategy, given their prominent role in inflammation and wound healing. Towards this goal, we explore the effect of biomimetic multi-scale wrinkles on macrophage adhesion and expression of phenotype markers. We find that macrophages elongate along the direction of the uniaxial wrinkles made from shape memory polymers, and express more arginase-1 and IL-10, and less TNF-alpha, suggesting polarization towards an alternatively activated, antiinflammatory phenotype. Materials were further implanted in the subcutaneous space of mice and tissue surrounding the material evaluated by histology and immunohistochemistry. We found that material surface topography altered the distribution of collagen deposition in the adjacent tissue, with denser collagen tissue observed near flat materials when compared to wrinkled materials. Furthermore, cells surrounding wrinkled materials exhibited higher arginase-1 expression. Together these data suggest that wrinkled material surfaces promote macrophage alternative activation, and may influence the foreign body response to implants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available