4.5 Article

Construction of a temperature-responsive terpolymer coating with recyclable bactericidal and self-cleaning antimicrobial properties

Journal

BIOMATERIALS SCIENCE
Volume 4, Issue 12, Pages 1731-1741

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6bm00587j

Keywords

-

Funding

  1. National Key RD Program [2016YFC1101201]
  2. National Science and Technology Major Project [2014ZX09303301]

Ask authors/readers for more resources

Once a biomedical implant is implanted into a human body, proteins and bacteria can easily colonize the implant, and subsequently, a biofilm can grow on the surface. A biofilm can protect the inhabiting bacteria against macrophages and neutrophil cell attack from the host immune system. The most important issue for artificial antibacterial surfaces is the accumulation of the bacteria corpse after they are killed by contact, which promotes further adhesion of bacteria and biofilm formation. Therefore, we constructed a novel multifunctional bactericidal and fouling release antibacterial surface through the combination of temperature-responsive N-vinylcaprolactam (VCL), hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) and a bactericidal quaternary ammonium salt (2-(dimethylamino)-ethyl methacrylate (DMAEMA(+))). The terpolymer coating was prepared through surface-initiated reversible addition-fragmentation chain-transfer (RAFT) polymerization and characterized using water contact angle measurements, atomic force microscopy and spectroscopic ellipsometry. At a temperature above the lower critical solution temperature (LCST), the P(VCL-co-DMAEMA(+)-co-MPC) terpolymer coating was in a compressed and hydrophobic state with low moisture content, which displayed bactericidal efficiency against Gram-positive Staphylococcus aureus. The coating could be switched into a relatively hydrophilic surface at a temperature below the LCST, which showed self-cleaning properties against both bacteria and bovine serum albumin. The functionalized surface showed good biocompatibility against human lens epithelial cells as evaluated by morphology studies and activity measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available