4.5 Article

Cationic polycarbonate-grafted superparamagnetic nanoparticles with synergistic dual-modality antimicrobial activity

Journal

BIOMATERIALS SCIENCE
Volume 4, Issue 5, Pages 871-879

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5bm00545k

Keywords

-

Funding

  1. Singapore Ministry of Education [MOE2013-T3-1-002]

Ask authors/readers for more resources

We report a new class of antimicrobial nanomaterials with biodegradable cationic polycarbonates grafted on superparamagnetic nanoparticles. Our results have shown that end-functionalized cationic polycarbonates, synthesized by organocatalytic ring opening polymerization, can be grafted onto superparamagnetic MnFe2O4 nanoparticles via ligand exchange. In comparison with the individual building blocks, the core-shell hybrid nanoparticles led to improved antimicrobial activities in two ways: first, the cationic polycarbonates in a brush form afforded a greater charge density than that of free polymer chains, resulting in stronger interactions with bacterial surfaces. Second, the structural integration of the soft polycarbonate shell and the hard superparamagnetic core in the hybrid nanoparticles brings about a synergistic action of membrane disruption by the cationic shell and magnetic hyperthermia by the nanoparticle core. The combination of two physical killing mechanisms holds great promise in fighting against a broad spectrum of bacterial pathogens.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available