3.8 Article

Hydrogen and oxygen evolution reactions on single atom catalysts stabilized by a covalent organic framework

Journal

ENERGY ADVANCES
Volume 2, Issue 7, Pages 1022-1029

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ya00162h

Keywords

-

Ask authors/readers for more resources

Single Atom Catalysts (SACs) bridge the gap between homogenous and heterogenous catalysis and show promise in various chemical reactions, including water splitting. This study focuses on SACs embedded in Covalent Organic Frameworks (COFs) and investigates their reactivity in Hydrogen and Oxygen Evolution Reactions (HER and OER, respectively) using density functional theory (DFT). The results reveal the formation of unique intermediates and shed light on the reaction mechanism, providing valuable insights for the design of novel catalytic materials.
Single Atom Catalysts (SACs) bridge homo- and heterogenous catalysis and are promising for several chemical processes of interest, including water splitting. SACs can form reaction adducts that do not likely form on conventional metal catalysts. Besides the typical supporting matrices made by carbon-based materials, Covalent Organic Frameworks (COFs) are gaining attention because of the possibility to design the hosting cavity to stably bind the active metal site. We performed a density functional theory (DFT) study of a set of SACs made by transition metal atoms embedded in a recently synthesized COF material. We explored their reactivity in Hydrogen and Oxygen Evolution Reactions (HER and OER, respectively). SACs@COF can form several intermediates with no counterpart on the classical metal electrodes, with important implications on the reaction mechanism. The results are useful for the design of novel catalytic materials and for the identification of interpretative/predictive activity descriptors. Catalytic activity for HER and OER of SAC made by TM atoms embedded in COF were investigated. They often form stable unconventional intermediates, and these species can be more stable than classical HER and OER adducts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available