4.5 Article

Investigating mechanical properties of B4C films produced by magnetron sputtering PVD

Journal

SOLID STATE SCIENCES
Volume 146, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.solidstatesciences.2023.107336

Keywords

Physical vapor deposition; Boron carbide; Magnetron sputtering; Bias voltage

Ask authors/readers for more resources

Boron carbide thin films have attracted significant interest due to their exceptional physical and chemical properties. The results of this study indicate that substrate bias significantly affects the mechanical, structural, and morphological properties of these films.
Boron carbide thin films have recently garnered significant interest across various fields owing to their exceptional physical and chemical properties, such as high wear and corrosion resistance, as well as high hardness, being the third hardest material after diamond and cubic boron nitride. Different coating methods, including physical vapor deposition (PVD) and chemical vapor deposition (CVD), are used to produce these films. In this study, boron carbide thin films were deposited on single-crystal silicon substrates and high-speed steel (HSS) using magnetron sputtering at varying bias voltages (0, -100, and -200 V) in an argon atmosphere utilizing a B4C target. The process temperature, target power, and revolution speed were held constant at 150 degrees C, 1.3 kW, and 2 rpm, respectively. The mechanical, morphological, and microstructure properties of the deposited films were examined using FE-SEM, XRD, FTIR, Raman, XPS, Scratch test and Ferroxyl test. Nanoindentation test was conducted to evaluate the hardness values of the films. The experimental findings suggest that substrate bias significantly affects the mechanical, structural, and morphological properties of B4C coatings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available