4.5 Article

Organelles and chromatin fragmentation of human umbilical vein endothelial cell influence by the effects of zeta potential and size of silver nanoparticles in different manners

Journal

ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY
Volume 45, Issue 4, Pages 817-823

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/21691401.2016.1178132

Keywords

Cancer; human umbilical vein endothelial cell; particle size; silver nanoparticle; zeta potential

Funding

  1. Student's Scientific Research Center, Tehran University of Medical Science, Tehran, Iran [91-04-61-18748]

Ask authors/readers for more resources

Recently, it has been disclosed that silver nanoparticles (AgNPs) have the potential to inhibit infection and cancerous cells and eventually penetrate through injected site into the capillary due to their small size. This study focuses on the effect of size and zeta potential of bare and citrate-coated AgNPs on human umbilical vein endothelial cells (HUVECs) as main capillary cells. AgNPs with high and low concentrations and no citrate coating were synthesized by using simple wet chemical method and named as AgNP/HC, AgNP/LC, and AgNP, respectively. Citrate coated particles showed larger zeta potential of -22mV and AgNp/HC showed the smallest size of 13.2nm. UV-Visible spectroscopy and dynamic light scattering (DLS) were performed to evaluate particle size and hydrodynamic diameter of NPs in water and cell culture media. Results indicated that higher concentrations of citrate decreased hydrodynamic diameter and NP agglomeration. reactive oxygen species (ROS) production of all AgNPs was similar at 28ppm although it was significantly higher than control group. Their effects on cell membrane and chromosomal structure were studied using LDH measurement and 4,6-diamidino-2-phenylindole (DAPI) staining, as well. Results demonstrated that AgNP/LC was less toxic to cells owing to higher value of IC50, minimum inhibitory concentration (MIC), and less release of LDH. Cancerous (Human Caucasian neuroblastoma) and immortal cells (Mouse embryonic fibroblast cell line) were about twice more sensitive than HUVECs to toxic effects of AgNPs. DAPI staining results showed that AgNP and AgNP/HC induced highest and lowest breaking of chromosome. Overall results suggest that viability of HUVECs will be higher than 90% when viability of cancerous cells is 50% in AgNPs chemotherapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available