4.7 Article

Rational design of full-spectrum visible-light-responsive bimetallic sulfide Bi2S3/CoS2 composites for high-efficiency photocatalytic degradation of naproxen and bacterial inactivation

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 348, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2023.119246

Keywords

Photocatalyst; Visible light; Antibiotic degradation; Inactivation of bacteria; Recyclability

Ask authors/readers for more resources

Photocatalytic water decontamination using Bi2S3/CoS2 composites shows great potential for efficient degradation of NPX and inactivation of E. coli under visible-light irradiation. The composites exhibit enhanced photodegradation activity and good recyclability, making them a promising solution for treating water contaminated with antibiotic and microbial pollutants.
Photocatalytic water decontamination has emerged as a highly promising technology for efficient and rapid water treatment, harnessing sustainable solar energy as its driving force. In this study, we prepared visible-light active Bi2S3/CoS2 composites for the degradation of naproxen (NPX) and the inactivation of Escherichia coli (E. coli). The homogeneous dispersion of CoS2 was stably integrated with Bi2S3, resulting in a significant enhancement of the specific surface area, efficient utilization of visible light, and effective separation of photogenerated charge carriers. Consequently, this synergistic photocatalytic system greatly facilitated the successful degradation of NPX and the inactivation of E. coli under visible-light irradiation. Compared to the pure Bi2S3 and CoS2 catalysts, the Bi2S3/CoS2 (1:2) composites displayed significantly enhanced photodegradation activity, achieving 96.46% (k = 0.2847 min-1) degradation of NPX within 90 min and maintaining good recyclability with no significant decline after six successive cycles. Additionally, the photocatalytic inactivation of E. coli results indicated that Bi2S3/CoS2 composites exhibited excellent performance, leading to the inactivation of 7 log10 cfu mL-1 of bacterial cells after 150 min of visible-light exposure. Scanning Electron Microscopy (SEM) and K+ ions leakage tests demonstrated that the destruction of the E. coli cell membrane structure resulted in cell death. The outcomes of this work suggest that Bi2S3/CoS2 composites hold significant potential for treating water contaminated with antibiotic and microbial pollutants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available