4.8 Article

A conserved protein inhibitor brings under check the activity of RNase E in cyanobacteria

Journal

NUCLEIC ACIDS RESEARCH
Volume -, Issue -, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkad1094

Keywords

-

Ask authors/readers for more resources

A protein called RebA was found to interact with RNase E in cyanobacteria and suppress its cleavage activity for substrates. The absence or overproduction of RebA had an impact on bacterial cell morphology, which was dependent on their physical interaction with RNase E.
The bacterial ribonuclease RNase E plays a key role in RNA metabolism. Yet, with a large substrate spectrum and poor substrate specificity, its activity must be well controlled under different conditions. Only a few regulators of RNase E are known, limiting our understanding on posttranscriptional regulatory mechanisms in bacteria. Here we show that, RebA, a protein universally present in cyanobacteria, interacts with RNase E in the cyanobacterium Anabaena PCC 7120. Distinct from those known regulators of RNase E, RebA interacts with the catalytic region of RNase E, and suppresses the cleavage activities of RNase E for all tested substrates. Consistent with the inhibitory function of RebA on RNase E, depletion of RNase E and overproduction of RebA caused formation of elongated cells, whereas the absence of RebA and overproduction of RNase E resulted in a shorter-cell phenotype. We further showed that the morphological changes caused by altered levels of RNase E or RebA are dependent on their physical interaction. The action of RebA represents a new mechanism, potentially conserved in cyanobacteria, for RNase E regulation. Our findings provide insights into the regulation and the function of RNase E, and demonstrate the importance of balanced RNA metabolism in bacteria. Graphical Abstract

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available