4.5 Article

Effect mechanism of micron-scale zero-valent iron enhanced pyrite-driven denitrification biofilter for nitrogen and phosphorus removal

Journal

BIOPROCESS AND BIOSYSTEMS ENGINEERING
Volume -, Issue -, Pages -

Publisher

SPRINGER
DOI: 10.1007/s00449-023-02941-x

Keywords

Zero-valent iron; Pyrite-driven denitrification biofilter; Nitrate and phosphorus removal; Microbial diversity

Ask authors/readers for more resources

This study explores the effect mechanism of micron-scale zero-valent iron (mZVI) on improving nitrogen and phosphorus removal in a pyrite-driven denitrification biofilter. The results show that the addition of mZVI significantly enhances the removal efficiency, promotes reaction kinetics, and stimulates the enrichment of functional bacteria.
This study aims to explore the effect mechanism of micron-scale zero-valent iron (mZVI) to improve nitrogen and phosphorus removal in a pyrite (FeS2)-driven denitrification biofilter (DNBF) for the secondary effluent treatment. Two similar DNBFs (DNBF-A with FeS2 as fillers and DNBF-B with the mixture mZVI and FeS2 as carrier) were developed. The results showed that NO3--N, total nitrogen (TN) and PO43--P removal efficiencies were up to 91.64%, 67.44% and 80.26% in DNBF-B, which were obviously higher than those of DNBF-A (with NO3--N, TN and PO43--P removal efficiencies of 38.39%, 44.89% and 53.02%, respectively). Kinetic analysis of both PO43--P and NO3--N showed an increase in the rate constant (K) for DNBF-B compared to DNBF-A. The addition of mZVI not only improved the electron transport system activity (ETSA), but also achieved system Fe(II)/Fe(III) redox cycle in DNBF-B. In addition, the high-throughput sequencing analysis indicated that the addition of mZVI could obviously stimulate the enrichment of functional bacteria, such as Thiobacillus (11.99%), Mesotoga (7.50%), JGI-0000079D21 (6.37%), norank_f__Bacteroidetes_vadinHA17 (6.19%), Aquimonas (5.93%) and Arenimonas (3.97%). These genus played the important role in nitrogen and phosphorus removal in DNBF-B. Addition mZVI in the FeS2-driven denitrification biofilter is highly promising for TN and TP removal during secondary effluent treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available