4.7 Article

Energy performance assessment of a solar-driven thermochemical cycle device for green hydrogen production

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.seta.2023.103463

Keywords

Modelling; Solar energy; Hydrogen production; Thermochemical reactor

Ask authors/readers for more resources

This paper presents a novel dynamic simulation model for assessing the energy performance of solar-driven systems employed in green hydrogen production. The model is based on a transient finitedifference method and integrates a theoretical analysis of materials and operating principles. Experimental validation showed good agreement between experimental and simulated results. The developed model and tools can be useful for the basic design and optimization of this technology.
This paper presents a novel dynamic simulation model for assessing the energy performance of solar-driven systems employed in green hydrogen production. The system consists of a parabolic dish collector that focuses solar radiation on two cerium-based thermochemical reactors. The model is based on a transient finitedifference method to simulate the thermal behaviour of the system and it integrates a theoretical analysis of materials and operating principles. Different empirical data were considered for experimentally validating it: a good agreement between experimental and simulated results was obtained for the temperatures calculated inside the thermochemical reactor (R2 = 0.99, MAPE = 6.3%) and the hourly flow rates of hydrogen, oxygen, and carbon monoxide (R2 = 0.96, MAPE = 10%) inside the thermochemical reactor. The model was implemented in a MatLab tool for the system dynamic analysis under different boundary conditions. Subsequently, to explore the capability of this approach, the developed tool was used for analysing the examined device operating in twelve different weather zones. The obtained results comprise heat maps of specific crucial instants and hourly dynamic trends showing redox reaction cycles occurring into the thermochemical reactors. The yearly hydrogen production ranges from 1.19 m3/y to 1.64 m3/y according to the hourly incident solar radiations, outdoor air temperatures and wind speeds. New graphic tools for rapid feasibility studies are presented. The developed tools and the obtained results can be useful to the basic design of this technology and for the multi-objective optimization of its layout and main design/operating parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available