4.7 Article

Hemicellulose-rich paper-grade pulp as raw material for regenerated fibres in an ionic liquid-based process

Journal

CELLULOSE
Volume -, Issue -, Pages -

Publisher

SPRINGER
DOI: 10.1007/s10570-023-05589-8

Keywords

Regenerated fibres; Hemicellulose; Kraft pulp; Endoglucanase; Dry-jet wet spinning; Ionic liquid

Ask authors/readers for more resources

In this study, regenerated fibers were spun from hemicellulose-rich pulps using a superbase ionic liquid, and it was found that pulp pretreatment was critical for achieving good mechanical properties in the regenerated fibers.
Hemicellulose-rich pulp raw materials are avoided in the production of man-made cellulosic textile fibres due to hemicellulose reactivity with the currently used industrial solvent systems. Incorporation of hemicelluloses in regenerated fibres could, however, increase the share of used wood biomass and thus improve the environmental footprint of regenerated fibre products. Superbase ionic liquids have shown potential in dissolving and regenerating all the major wood polymers i.e. cellulose, hemicellulose and lignin into regenerated products. In this work, regenerated fibres were spun from hemicellulose-rich softwood and eucalyptus paper-grade pulps and eucalyptus dissolving pulp using a superbase ionic liquid [mTBNH][OAc]. Before dissolution and spinning, intrinsic viscosities of the paper-grade pulps were adjusted either enzymatically or by using a mild acid-treatment to improve dope rheology for dry-jet wet spinning. In fibre spinning, hemicellulose was found to regenerate in high yield and the obtained regenerated fibres had high dry tenacities (5.3 to 15 cN/dtex). The best mechanical properties were measured from fibres with high hemicellulose content (17.3% (w/w)). Pulp pretreatment was found to be critical for achieving good mechanical properties. Acid-pretreatment, which modified both cellulose and hemicellulose, yielded regenerated fibres with better mechanical properties compared to an enzyme-pretreatment which did not alter the hemicellulose structure. Removal of hemicellulose substituents and hydrolysis of hemicellulose backbone in acid-pretreatment may be the key to improved mechanical properties in hemicellulose-containing regenerated fibres. Enzymatic peeling and imaging with a xylan-specific monoclonal antibody (CCRC-M138) suggest that hemicelluloses were enriched to the outermost layers of the regenerated fibres.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available