4.8 Article

Hyperbolic Polaritonic Rulers Based on van der Waals α-MoO3 Waveguides and Resonators

Journal

ACS NANO
Volume 17, Issue 22, Pages 23057-23064

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.3c08735

Keywords

nanophotonics; polaritonics; van der Waalsmaterials; near-field optical microscopy; nanometrology

Ask authors/readers for more resources

This study presents hyperbolic polaritonic rulers based on low-dimensional, strongly anisotropic nanomaterials, which exhibit near-field polaritonic characteristics that are highly sensitive to device geometry. Using scanning near-field optical microscopy, the researchers demonstrate the strongly confined image polariton modes supported by these rulers and describe and predict their behavior using a simple analytic model.
Low-dimensional, strongly anisotropic nanomaterials can support hyperbolic phonon polaritons, which feature strong light-matter interactions that can enhance their capabilities in sensing and metrology tasks. In this work, we report hyperbolic polaritonic rulers, based on microscale alpha-phase molybdenum trioxide (alpha-MoO3) waveguides and resonators suspended over an ultraflat gold substrate, which exhibit near-field polaritonic characteristics that are exceptionally sensitive to device geometry. Using scanning near-field optical microscopy, we show that these systems support strongly confined image polariton modes that exhibit ideal antisymmetric gap polariton dispersion, which is highly sensitive to air gap dimensions and can be described and predicted using a simple analytic model. Dielectric constants used for modeling are accurately extracted using near-field optical measurements of alpha-MoO(3 )waveguides in contact with the gold substrate. We also find that for nanoscale resonators supporting in-plane Fabry-Perot modes, the mode order strongly depends on the air gap dimension in a manner that enables a simple readout of the gap dimension with nanometer precision.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available