4.8 Article

Stretching of immersed polyelectrolyte brushes in shear flow

Journal

NANOSCALE
Volume 15, Issue 47, Pages 19282-19291

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3nr04187e

Keywords

-

Ask authors/readers for more resources

In this study, the response of polymer brushes to shear flow is explored using in situ X-ray reflectivity. The research investigates how poly(styrene sulfonate) (PSS) brushes stretch and change in different environments, providing valuable insights into the behaviours and mechanisms that govern these responses.
The way that polymer brushes respond to shear flow has important implications in various applications, including antifouling, corrosion protection, and stimuli-responsive materials. However, there is still much to learn about the behaviours and mechanisms that govern these responses. To address this gap in knowledge, our study uses in situ X-ray reflectivity to investigate how poly(styrene sulfonate) (PSS) brushes stretch and change in different environments, such as isopropanol (a poor solvent), water (a good solvent), and aqueous solutions containing various cations (Cs+, Ba2+, La3+, and Y3+). We have designed a custom apparatus that exposes the PSS brushes to both tangential shear forces from the primary flow and upward drag forces from a secondary flow. Our experimental findings clearly show that shear forces have a significant impact on how the chains in PSS brushes are arranged. At low shear rates, the tangential shear force causes the chains to tilt, leading to brush contraction. In contrast, higher shear rates generate an upward shear force that stretches and expands the chains. By analysing electron density profiles obtained from X-ray reflectivity, we gain valuable insights into how the PSS brushes respond structurally, especially the role of the diffuse layer in this dynamic behaviour. Our results highlight the importance of the initial chain configuration, which is influenced by the solvent and cations present, in shaping how polymer brushes respond to shear flow. The strength of the salt bridge network also plays a crucial role in determining how easily the brushes can stretch, with stronger networks offering more resistance to stretching. Ultimately, our study aims to enhance our understanding of polymer physics at interfaces, with a particular focus on practical applications involving polymer brushes. In situ X-ray reflectivity reveals how shear flow affects poly(styrene sulfonate) brush stretching, impacting chain configuration and applications in antifouling, corrosion protection, and stimuli-responsiveness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available