4.4 Article

Structural and electrical correlation in aluminum nitride thin films grown by plasma enhanced atomic layer deposition as interface insulating layers on silicon carbide (4H-SiC)

Journal

MICROELECTRONIC ENGINEERING
Volume 283, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.mee.2023.112103

Keywords

Dielectric; High k; Aluminum nitride; Thin films; Atomic layer deposition

Ask authors/readers for more resources

This study demonstrates the growth of oriented AlN thin films on 4H-SiC substrates using PE-ALD technique, and investigates the impact of NH3 plasma pulsing on the microstructure and orientation degree of the AlN layers. The structural characterization reveals different polymorphic structures depending on the NH3 plasma pulsing time, and electrical nanoscopic characterization shows a correlation between the AlN crystalline phases and the insulating properties.
(0001) oriented aluminum nitride (AlN) thin films have been grown by plasma enhanced atomic layer deposition (PE-ALD) on silicon carbide (4H-SiC) substrates. During different PE-ALD processes, the ammonia (NH3) plasma pulsing time has been varied and its effect on the microstructure and on the orientation degree of the AlN layers has been monitored. Structural characterization by Transmission Electron Microscopy (TEM) showed that the crystalline structure of the deposited films was strongly dependent on the NH3-plasma pulsing, so that different polymorphic structures were observed. In particular, both processes resulted in wurtzite AlN structure for few nanometers at the interface with the 4H-SiC substrate, while upon increasing thickness a poly-crystalline wurtzite phase was obtained by short-pulse NH3-plasma, whereas longer plasma exposure resulted in a mixture of wurtzite and zincblende defective phases. Phase formation mechanism were discussed and electrical nanoscopic characterization by conductive atomic force microscopy showed a clear correlation between the different AlN crystalline phases and the insulating properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available