4.8 Article

Artificial cell synthesis using biocatalytic polymerization-induced self-assembly

Journal

NATURE CHEMISTRY
Volume -, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41557-023-01391-y

Keywords

-

Ask authors/readers for more resources

This study introduces enzymatically synthesized polymer-based artificial cells that are capable of expressing proteins. These artificial cells are generated using biocatalytic atom transfer radical polymerization-induced self-assembly, and can encapsulate various cargoes. They act as microreactors for enzymatic reactions and biomineralization, and can express proteins when supplied with amino acids. The formation of internal compartments through actin polymerization alters the internal structure of the cells. These artificial cells have the potential to mimic bacteria and have important applications.
Artificial cells are biomimetic microstructures that mimic functions of natural cells, can be applied as building blocks for molecular systems engineering, and host synthetic biology pathways. Here we report enzymatically synthesized polymer-based artificial cells with the ability to express proteins. Artificial cells were synthesized using biocatalytic atom transfer radical polymerization-induced self-assembly, in which myoglobin synthesizes amphiphilic block co-polymers that self-assemble into structures such as micelles, worm-like micelles, polymersomes and giant unilamellar vesicles (GUVs). The GUVs encapsulate cargo during the polymerization, including enzymes, nanoparticles, microparticles, plasmids and cell lysate. The resulting artificial cells act as microreactors for enzymatic reactions and for osteoblast-inspired biomineralization. Moreover, they can express proteins such as a fluorescent protein and actin when fed with amino acids. Actin polymerizes in the vesicles and alters the artificial cells' internal structure by creating internal compartments. Thus, biocatalytic atom transfer radical polymerization-induced self-assembly-derived GUVs can mimic bacteria as they are composed of a microscopic reaction compartment that contains genetic information for protein expression upon induction. Enzyme-initiated polymerization-induced self-assembly has been used to generate various biomimetic structures. Now, myoglobin's activity is used for biocatalytic polymerization-induced self-assembly to generate vesicular artificial cells. As various cargoes can be encapsulated during polymerization, these artificial cells are capable of protein expression and can act as microreactors for distinct enzymatic reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available