4.7 Article

Transparent regenerated cellulose film containing azobenzene group with reversible stimulus discoloration property

Journal

CARBOHYDRATE POLYMERS
Volume 324, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2023.121569

Keywords

Azobenzene; Photochromic; Acid-chromic; Transparent; Regenerated cellulose film

Ask authors/readers for more resources

A transparent regenerated cellulose film with reversible multi-stimulus discoloration property was manufactured using a universal dissolution-regeneration technique. This functional film, synthesized by introducing a cellulose-grafted azobenzene derivative into the cellulose solution, exhibited both photochromic and acid-chromic attributes.
The cellulose film, exhibiting color alterations in response to external stimuli, presents itself as a promising functional material. In this study, a universal dissolution-regeneration technique was employed to manufacture a transparent, regenerated cellulose film, characterized by its reversible multi-stimulus discoloration property. This functional cellulose film, endowed with both photochromic and acid-chromic attributes, was synthesized through the introduction of a cellulose-grafted azobenzene derivative into the cellulose solution. The hue of a cellulose film irradiated with ultraviolet light could be inverted upon exposure to visible light or heat. Furthermore, when subject to heating, irradiation, or immersion in an acidic medium, this functional film demonstrated pronounced transparency. The acid-chromic behavior of the film was readily discernible when exposed to highly concentrated acidic aqueous solutions. Both the photochromic and acid-chromic phenomena were discernable to the unaided eye. After ten cycles, no fading of the reversible discoloration properties of the material occurred. This transparent regenerated cellulose film stands as a viable candidate for applications in optical data storage, intelligent switches, and sensors, owing to its capacity for reversible stimulus-triggered discoloration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available