4.7 Article

Neural Galerkin schemes with active learning for high-dimensional evolution equations

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 496, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2023.112588

Keywords

Scientific computing; Machine learning; Deep neural networks; Partial differential equations; Active learning; Monte Carlo

Ask authors/readers for more resources

This study proposes a neural Galerkin scheme based on deep learning for numerically solving high-dimensional partial differential equations. The scheme generates training data through active learning, enabling simulation of phenomena and processes that traditional and other deep-learning-based solvers fail to handle.
Deep neural networks have been shown to provide accurate function approximations in high dimensions. However, fitting network parameters requires informative training data that are often challenging to collect in science and engineering applications. This work proposes Neural Galerkin schemes based on deep learning that generate training data with active learning for numerically solving high-dimensional partial differential equations. Neural Galerkin schemes build on the Dirac-Frenkel variational principle to train networks by minimizing the residual sequentially over time, which enables adaptively collecting new training data in a self-informed manner that is guided by the dynamics described by the partial differential equations. This is in contrast to other machine learning methods that aim to fit network parameters globally in time without taking into account training data acquisition. Our finding is that the active form of gathering training data of the proposed Neural Galerkin schemes is key for numerically realizing the expressive power of networks in high dimensions. Numerical experiments demonstrate that Neural Galerkin schemes have the potential to enable simulating phenomena and processes with many variables for which traditional and other deep-learning-based solvers fail, especially when features of the solutions evolve locally such as in high-dimensional wave propagation problems and interacting particle systems described by Fokker-Planck and kinetic equations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available