4.5 Article

Alternative splicing and environmental adaptation in wild house mice

Journal

HEREDITY
Volume -, Issue -, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1038/s41437-023-00663-0

Keywords

-

Ask authors/readers for more resources

This study used exome sequences and RNA-Seq data to identify candidate genes for local adaptation through alternative splicing in wild house mice. The researchers identified a small set of alternatively spliced transcripts that may be involved in environmental adaptation, and many of these genes are associated with body size. There was no overlap between these genes and genes previously identified by changes in mRNA abundance, suggesting that alternative splicing and changes in mRNA abundance may provide separate molecular mechanisms of adaptation.
A major goal of evolutionary genetics is to understand the genetic and molecular mechanisms underlying adaptation. Previous work has established that changes in gene regulation may contribute to adaptive evolution, but most studies have focused on mRNA abundance and only a few studies have investigated the role of post-transcriptional processing. Here, we use a combination of exome sequences and short-read RNA-Seq data from wild house mice (Mus musculus domesticus) collected along a latitudinal transect in eastern North America to identify candidate genes for local adaptation through alternative splicing. First, we identified alternatively spliced transcripts that differ in frequency between mice from the northern-most and southern-most populations in this transect. We then identified the subset of these transcripts that exhibit clinal patterns of variation among all populations in the transect. Finally, we conducted association studies to identify cis-acting splicing quantitative trait loci (cis-sQTL), and we identified cis-sQTL that overlapped with previously ascertained targets of selection from genome scans. Together, these analyses identified a small set of alternatively spliced transcripts that may underlie environmental adaptation in house mice. Many of these genes have known phenotypes associated with body size, a trait that varies clinally in these populations. We observed no overlap between these genes and genes previously identified by changes in mRNA abundance, indicating that alternative splicing and changes in mRNA abundance may provide separate molecular mechanisms of adaptation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available