4.7 Article

A Shape Derivative Approach to Domain Simplification

Journal

COMPUTER-AIDED DESIGN
Volume 167, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.cad.2023.103636

Keywords

Defeaturing; Domain simplification; Adaptivity; Sensitivity analysis; Shape calculus; Isogeometric analysis; Hierarchical B-splines

Ask authors/readers for more resources

The objective of this study is to address the difficulty of simplifying a geometric model while maintaining the accuracy of the solution. A goal-oriented adaptive strategy is proposed to reintroduce geometric features in regions with significant impact on the quantity of interest. This approach enables faster and more efficient simulations.
The objective of this study is to address the difficulty of simplifying the geometric model in which a differential problem is formulated, also called defeaturing, while simultaneously ensuring that the accuracy of the solution is maintained under control. This enables faster and more efficient simulations, without sacrificing accuracy in the regions of interest. More precisely, we consider an isogeometric discretisation of an elliptic model problem defined on a two-dimensional simply connected hierarchical B-spline physical domain with a complex boundary. Starting with an oversimplification of the geometry, we build a goal-oriented adaptive strategy that adaptively reintroduces continuous geometrical features in regions where the analysis suggests a large impact on the quantity of interest. This strategy is driven by an a posteriori estimator of the defeaturing error based on first-order shape sensitivity analysis, and it profits from the local refinement properties of hierarchical B-splines. The adaptive algorithm is described together with a procedure to generate (partially) simplified hierarchical B-spline geometrical domains. Numerical experiments are presented to illustrate the proposed strategy and its limitations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available