4.7 Article

Holistic approach to waste mobil oil bioremediation: Valorizing waste through biosurfactant production for soil restoration

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 348, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2023.119207

Keywords

Waste mobil oil; Polyaromatic hydrocarbons; Biodegradation; Rhamnolipid; Phytotoxicity

Ask authors/readers for more resources

In this study, the emission of toxic compounds from the combustion of mobil oil was evaluated, and a strain capable of degrading aromatic and aliphatic hydrocarbons and producing biosurfactants was studied. The results showed that the strain was able to degrade different types of hydrocarbons, and the addition of biosurfactant enhanced the degradation process, leading to improved soil fertility.
The combustion of mobil oil leads to the emission of toxic compounds in the environment. In this study, the aromatic and aliphatic hydrocarbon fractions present in a waste mobil oil collected from automobile market were comprehensively identified and their toxicity was evaluated using wheat grain. Lysinibacillus sphaericus strain IITR51 isolated and characterized previously could degrade 30-80% of both aliphatic and aromatic hydrocarbons in liquid culture. Interestingly, the strain IITR51 produced 627 mg/L of rhamnolipid biosurfactant by utilizing 3% (v/v) of waste mobil oil in the presence of 1.5% glycerol as additional carbon source. In a soil microcosm study by employing strain IITR51, 50-86% of 3-6 ring aromatic hydrocarbons and 63-98% of aliphatic hydrocarbons (C8 to C22) were degraded. Addition of 60 mu g/mL rhamnolipid biosurfactant enhanced the degradation of both aliphatic and aromatic hydrocarbons from 76.88% to 61.21%-94.11% and 78.27% respectively. The degradation of mobil oil components improved the soil physico-chemical properties and increased soil fertility to 64% as evident by the phytotoxicity assessments. The findings indicate that strain IITR51 with degradation capability coupled with biosurfactant production could be a candidate for restoring hydrocarbon contaminated soils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available