4.7 Article

In silico analysis unravels the promising anticariogenic efficacy of fatty acids against dental caries causing Streptococcus mutans

Journal

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2023.2283155

Keywords

Dental caries; S. mutans; GtfC; antigen I/II; Sortase A; fatty acids; docking; ADME profiles; molecular dynamics

Ask authors/readers for more resources

This study is the first to demonstrate the potential of fatty acids as promising anti-caries agents using in silico data. Through virtual screening, molecular dynamics simulation, and binding free energy prediction, the best fatty acid ligands for three protein targets associated with Streptococcus mutans were identified. Further analysis indicated that these fatty acids have stable binding affinity and biological feasibility as therapeutic candidates.
Globally, dental caries is a prevalent oral disease caused by cariogenic bacteria, primarily Streptococcus mutans. It establishes caries either through sucrose-dependent (via glycosyltransferases) or through sucrose-independent (via surface adhesins Antigen I/II) mechanism. Sortase A (srtA) attaches virulence-associated adhesins to host tissues. Because of their importance in the formation of caries, targeting these proteins is decisive in the development of new anticariogenic drugs. High-throughput virtual screening with LIPID MAPS -a fatty acid database was performed. The selected protein-ligand complexes were subjected to molecular dynamics simulation (MDs). The Binding Free Energy of complexes was predicted using MM/PBSA. Further, the drug-likeness and pharmacokinetic properties of ligands were also analyzed. Out of 46,200 FAs scrutinized virtually against the three protein targets (viz., GtfC, Ag I/II and srtA), top 5 FAs for each protein were identified as the best hit based on interaction energies viz., hydrogen bond numbers and hydrophobic interaction. Further, two common FAs (LMFA01050418 and LMFA01040045) that showed high binding affinity against Ag I/II and srtA were selected for MDs analysis. A 100ns MDs unveiled a stable conformation. Results of Rg signified that FAs does not induce significant structural & conformational changes. SASA indicated that the complexes maintain higher thermodynamic stability during MDs. The predicted binding free energy (MM/PBSA) of complexes elucidated their stable binding interaction. ADME analysis suggested the FAs are biologically feasible as therapeutic candidates. Overall, the presented in silico data is the first of its kind in delineating FAs as promising anticaries agents of future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available