4.7 Article

Novel Gold Nanorods@Thiolated Pectin on the Killing of HeLa Cells by Photothermal Ablation

Journal

PHARMACEUTICS
Volume 15, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/pharmaceutics15112571

Keywords

gold nanorods; thiolated pectin; cancer; photothermal conversion; photothermal therapy

Ask authors/readers for more resources

In this study, novel gold nanorods stabilized with thiolated pectin were synthesized and their potential for photothermal therapy was investigated. The results showed that thiolated pectin effectively replaced the cetyltrimethylammonium bromide (CTAB) on the surface of the gold nanorods, enhancing their stability without affecting their optical properties. The photothermal conversion efficiency of the gold nanorods stabilized with thiolated pectin was similar to that of the gold nanorods stabilized with CTAB. In addition, cell viability assays confirmed that the thiolated pectin coating improved the biocompatibility of the gold nanorods and decreased cell viability under laser irradiation.
Gold nanorods (AuNRs) have attracted attention in the field of biomedicine, particularly for their potential as photothermal agents capable of killing tumor cells by photothermic ablation. In this study, the synthesis of novel AuNRs stabilized with thiolated pectin (AuNR@SH-PEC) is reported. To achieve this, thiolated pectin (SH-PEC) was obtained by chemically binding cysteamine motifs to the pectin backbone. The success of the reaction was ascertained using FTIR-ATR. Subsequently, the SH-PEC was used to coat and stabilize the surface of AuNRs (AuNR@SH-PEC). In this context, different concentrations of SH-PEC (0.25, 0.50, 1.0, 2.0, 4.0, and 8.0 mg/mL) were added to 0.50 mL of AuNRs suspended in CTAB, aiming to determine the experimental conditions under which AuNR@SH-PEC maintains stability. The results show that SH-PEC effectively replaced the CTAB adsorbed on the surface of AuNRs, enhancing the stability of AuNRs without affecting their optical properties. Additionally, scanning electron and atomic force microscopy confirmed that SH-PEC is adsorbed into the surface of the AuNRs. Importantly, the dimension size (60 x 15 nm) and the aspect ratio (4:1) remained consistent with those of AuNRs stabilized with CTAB. Then, the photothermal properties of gold nanorods were evaluated by irradiating the aqueous suspension of AuNR@SH-PEC with a CW laser (808 nm, 1 W). These results showed that photothermal conversion efficiency is similar to the photothermal conversion observed for AuNR-CTAB. Lastly, the cell viability assays confirmed that the SH-PEC coating enhanced the biocompatibility of AuNR@SH-PEC. Most important, the viability cell assays subjected to laser irradiation in the presence of AuNR@SH-PEC showed a decrease in the cell viability relative to the non-irradiated cells. These results suggest that AuNRs stabilized with thiolated pectin can potentially be exploited in the implementation of photothermal therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available