4.6 Article

Ultrasound-guided periadventitial administration of rapamycin-fibrin glue attenuates neointimal hyperplasia in the rat carotid artery injury model

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ejps.2023.106610

Keywords

Periadventitial; Fibrin glue; Rapamycin; The rat carotid injury model; Neointimal hyperplasia; Vascular smooth muscle cells

Ask authors/readers for more resources

In this study, it was demonstrated that periadventitial delivery of rapamycin-fibrin glue (RPM-FG) can inhibit intimal hyperplasia (IH) in a rat carotid artery injury model without compromising re-endothelialization. This provides a promising direction for the future development of a safe, effective, and minimally invasive perivascular drug delivery method to treat vascular disease.
Introduction: Arterial restenosis caused by intimal hyperplasia (IH) is a serious complication after vascular interventions. In the rat carotid balloon injury model, we injected phosphate buffer saline (PBS), rapamycin-phosphate buffer saline suspension (RPM-PBS), blank fibrin glue (FG) and rapamycin-fibrin glue (RPM-FG) around the injured carotid artery under ultrasound guidance and observed the inhibitory effect on IH.Methods: The properties of RPM-FG in vitro were verified by scanning electron microscopy (SEM) and determination of the drug release rate. FG metabolism in vivo was observed by fluorescence imaging. The rat carotid balloon injury models were randomly classified into 4 groups: PBS group (control group), RPM-PBS group, FG group, and RPM-FG group. Periadventitial administration was performed by ultrasound-guided percutaneous puncture on the first day after angioplasty. Carotid artery specimens were analyzed by immunostaining, Evans blue staining and hematoxylin-eosin staining.Results: The RPM particles showed clustered distributions in the FG block. The glue was maintained for a longer time in vivo (> 14 days) than in vitro (approximately 7 days). Two-component liquid FG administered by ultrasound-guided injection completely encapsulated the injured artery before coagulation. The RPM-FG inhibited IH after carotid angioplasty vs. control and other groups. The proliferation of vascular smooth muscle cells (VSMCs) was significantly inhibited during neointima formation, whereas endothelial cell (EC) repair was not affected.Conclusion: Periadventitial delivery of RPM-FG contributed to inhibiting IH in the rat carotid artery injury model without compromising re-endothelialization. Additionally, FG provided a promising platform for the future development of a safe, effective, and minimally invasive perivascular drug delivery method to treat vascular disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available