4.6 Article

Epidermal Growth Factor Tethered to β-Tricalcium Phosphate Bone Scaffolds via a High-Affinity Binding Peptide Enhances Survival of Human Mesenchymal Stem Cells/Multipotent Stromal Cells in an Immune-Competent Parafascial Implantation Assay in Mice

Journal

STEM CELLS TRANSLATIONAL MEDICINE
Volume 5, Issue 11, Pages 1580-1586

Publisher

WILEY
DOI: 10.5966/sctm.2015-0326

Keywords

Multipotent stem cells; Mesenchymal stem cells; Surface-tethered epidermal growth factor; beta-Tricalcium phosphate; Stem cell survival

Funding

  1. NIH [GM063569, GM069668]
  2. National Institute of Biomedical Imaging and Bioengineering-CATER T32 training grant [EB001026]
  3. National Cancer Institute-Skin Biology and Cancer T32 training grant [CA175294]

Ask authors/readers for more resources

Mesenchymal stem cells/multipotent stromal cells (MSCs) are attractive candidates for cell therapies owing to their ability to differentiate into many lineages. However, these cells often fail to survive when implanted into a harsh wound environment, limiting efficacy in vivo. To improve MSC survival, we previously found that tethered epidermal growth factor (tEGF) molecules that restrict epidermal growth factor receptor (EGFR) signaling to the cell surface provide resistance to death signals. To adapt this system to wound healing, we tethered epidermal growth factor (EGF) to tricalcium phosphate (TCP) particle scaffolds, clinically used in bone healing. Human primary MSCs seeded on TCP and mixed into a collagen-based gel were injected in the perifascial space of immunocompetent mice with or without tEGF attached to the surface. We found that tethering EGF to the TCP scaffolds yielded approximately a fourfold increase in MSC survival compared with non-EGF scaffolds at 21 days, as well as significant improvements in survival in the short term at 2 and 7 days after implantation. Overall, our approach to sustaining EGFR signaling reduced MSC death in vivo and may be useful for future cell therapies where MSCs typically die on implantation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available