4.6 Article

Multiscale tribology analysis of MHD hybrid nanofluid flow over a curved stretching surface

Journal

NANOSCALE ADVANCES
Volume -, Issue -, Pages -

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3na00688c

Keywords

-

Ask authors/readers for more resources

This study investigates the interactions between a hybrid nanofluid and a curved surface under stretching conditions. The findings show that Darcy-Forchheimer flow can increase flow rates and reduce skin friction, while the convective boundary condition promotes heat transfer and enhances the heat transfer rate.
In this study, we investigate the interactions of a hybrid nanofluid on a curved surface that is being stretched. The magnetic field is perpendicular to the flow and interacts with a mixture of molybdenum disulfide and argentum nanoparticles suspended in pure water, forming a hybrid nanomaterial. Our investigation considers heat transport analysis under different conditions, such as magnetohydrodynamic, Darcy-Forchheimer porous medium flow, Joule heating, and a convective boundary condition. We employ numerical and statistical methods to study the problem's intricacies comprehensively. Our findings indicate that Darcy-Forchheimer flow includes viscous and inertial forces, which results in higher flow rates and reduced skin friction. Additionally, the convective boundary condition leads to uniform temperature distribution within the hybrid material due to rapid internal heat transfer relative to surface resistance, significantly increasing the heat transfer rate. In this study, we investigate the interactions of a hybrid nanofluid on a curved surface that is being stretched.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available