4.7 Article

Ovarian cancer relies on the PDGFRβ-fibronectin axis for tumorsphere formation and metastatic spread

Journal

MOLECULAR ONCOLOGY
Volume 18, Issue 1, Pages 136-155

Publisher

WILEY
DOI: 10.1002/1878-0261.13556

Keywords

fibronectin; HGSOC; metastasis; ovarian cancer; PDGFR beta; tumorspheres

Categories

Ask authors/readers for more resources

High-grade serous ovarian cancer (HGSOC), the deadliest gynecological malignancy, spreads through transcoelomic dissemination. This study reveals that platelet-derived growth factor receptor beta (PDGFRβ) is essential for the formation of tumorspheres in HGSOC. Inhibition of PDGFRβ blocks the clustering of ovarian cancer cells and prevents peritoneal dissemination.
High-grade serous ovarian cancer (HGSOC) is the deadliest gynecological malignancy. The most common form of metastatic spread of HGSOC is transcoelomic dissemination. In this process, detached cells from the primary tumor aggregate as tumorspheres and promote the accumulation of peritoneal ascites. This represents an early event in HGSOC development and is indicative of poor prognosis. In this study, based on tumorspheres isolated from ascitic liquid samples from HGSOC patients, ovarian cancer spheroid 3D cultures, and in vivo models, we describe a key signal for tumorsphere formation in HGSOC. We report that platelet-derived growth factor receptor beta (PDGFR beta) is essential for fibronectin-mediated cell clustering of ovarian cancer cells into tumorspheres. This effect is mediated by the kinase NUAK family SNF1-like kinase 1 (NUAK1) and blocked by PDGFR beta pharmacological or genetic inhibition. In the absence of PDGFR beta, ovarian cancer cells can be provided with fibronectin by cancer-associated fibroblasts to generate chimeric spheroids. This work provides new insights that uncover potential targets to prevent peritoneal dissemination, the main cause of advanced disease in HGSOC patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available